Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A top‐down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well‐defined sizes, shapes, and compositions that are often not accessible by wet‐chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template‐assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size‐ and shape‐engineered templates and organize into open or close‐packed multi‐NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal‐shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close‐packed architectures highlights that introduction of a center NP to form close‐packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation‐dependent scattering response.more » « less
-
We show that the polymer-grafted nanoparticles (NPs) initially welldispersed in a polymer matrix segregate to the free surface of a film upon thermal annealing in the one-phase region of the phase diagram because the grafted polymer has a lower surface energy than the matrix polymer. Using a combination of atomic force microscopy, transmission electron microscopy, and Rutherford backscattering spectrometry, the evolution of the poly(methyl methacrylate)-grafted silica NP (PMMA NP) surface excess in 25/75 wt % PMMA NP/poly(styrene-ranacrylonitrile) films is observed as a function of annealing time at 150 °C (T < TLCST). The temporal growth of the surface excess is interpreted as a competition between entropic contributions, surface energy differences of the constituents, and the Flory−Huggins interaction parameter, χ. For the first time in a miscible polymer nanocomposite mixture, quantitative comparisons of NP surface segregation are made with the predictions of theory derived for analogous polymer blends. These studies provide insight for designing polymer nanocomposite films with advantageous surface properties such as wettability and hardness and motivate the need for developing rigorous models that capture complex polymer nanocomposite phase behaviors.more » « less
An official website of the United States government
